Let M be a n-dimensional complex manifold, let S be a globally irreducible compact analytic hypersurface with regular part S'=S-Sing(S), and let (f,g) be a pair of distinct holomorphic self-maps coinciding on S and such that g is a local biholomorphism over an open neighborhood of S'. We show that under certain hypotheses, on the pair (f,g) or on the way S' sits into M, we are able to define a 1-dimensional holomorphic foliation on S' and related partial holomorphic connections on some holomorphic vector bundles over S'. Consequently, we can obtain index theorems using the so-called Lehmann-Suwa machinery, which is based on localization of characteristic classes in Cech-de Rham cohomology.
Autore:
ARCANGELI, PAOLO
Titolo:
Index theorems for pairs of holomorphic self-maps in the Lehmann-Suwa framework [Tesi di dottorato]
Abstract:
Note:
diritti: info:eu-repo/semantics/openAccess
In relazione con info:eu-repo/semantics/altIdentifier/hdl/11573/948703
Autori secondari:
GARRONI, Adriana
valutatori esterni: M. Abate, S. Diverio, F. Tovena
tutor esterno: F. Bracci
GARRONI, Adriana
valutatori esterni: M. Abate, S. Diverio, F. Tovena
tutor esterno: F. Bracci
GARRONI, Adriana
Classe MIUR:
Settore MAT/03 - - Geometria
Tesi di dottorato. | Lingua: Inglese. | Paese: | BID: TD18047998
Documenti simili
- Stochastic models for biological evolution [Tesi di dottorato] Palmigiani, Davide
- Analysis of a linear elastic model relative to a small pressurized cavity embedded in the half-space [Tesi di dottorato] ASPRI, ANDREA
- Control oriented modelling of an integrated attitude and vibration suppression architecture for large space structures [Tesi di dottorato] ANGELETTI, FEDERICA
- Targeting NGF system to fight neuropathic pain behavioral and immunohistochemical evidence in mice [Tesi di dottorato] Fiori, Elena
- Caratterizzazione di Polar Stratospheric Clouds (PSC) Antartiche tramite osservazioni lidar ground-based e confronto con osservazioni lidar satellitari e output di modelli climatici accoppiati a modelli di chimica (CCM) [Tesi di dottorato] DE MURO, MAURO