This thesis deals with deformations of VB-algebroids and VB-groupoids. They can be considered as vector bundles in the categories of Lie algebroids and groupoids and encompass several classical objects, including Lie algebra and Lie group representations, 2-vector spaces and the tangent and the cotangent algebroid (groupoid) to a Lie algebroid (groupoid). Moreover, they are geometric models for some kind of representations of Lie algebroids (groupoids), namely 2-term representations up to homotopy. Finally, it is well known that Lie groupoids are ``concrete'' incarnations of differentiable stacks, hence VB-groupoids can be considered as representatives of vector bundles over differentiable stacks, and VB-algebroids their infinitesimal versions. In this work, we attach to every VB-algebroid and VB-groupoid a cochain complex controlling its deformations, their linear deformation complex. Moreover, the deformation complex of a VB-algebroid is equipped with a DGLA structure. The basic properties of these complexes are discussed: their relationship with the deformation complexes of the total spaces and the base spaces, particular cases and generalizations. The main theoretical results are a linear van Est theorem, that gives conditions for the linear deformation cohomology of a VB-groupoid to be isomorphic to that of the corresponding VB-algebroid, and a Morita invariance theorem, that implies that the linear deformation cohomology of a VB-groupoid is really an algebraic invariant of the associated vector bundle of differentiable stacks. Finally, several examples are discussed, showing how the linear deformation cohomologies are related to other well-known cohomologies.
Autore:
LA PASTINA, PIER PAOLO
Titolo:
Deformations of vector bundles in the categories of Lie groupoids and algebroids [Tesi di dottorato]
Abstract:
Note:
diritti: info:eu-repo/semantics/openAccess
In relazione con info:eu-repo/semantics/altIdentifier/hdl/11573/1343254
Autori secondari:
SAMBUSETTI, Andrea
valutatori esterni: N. Ciccoli, C. Laurent-Gengoux
tutor esterno: L. Vitagliano
DE SOLE, ALBERTO
valutatori esterni: N. Ciccoli, C. Laurent-Gengoux
tutor esterno: L. Vitagliano
DE SOLE, ALBERTO
Classe MIUR:
Settore MAT/03 - - Geometria
Tesi di dottorato. | Lingua: Inglese. | Paese: | BID: TD20018937
Documenti simili
- I Municipia nell’attuale provincia di Reggio Emilia: questioni di topografia e storia [Tesi di dottorato] STORCHI, PAOLO
- Migrants’ health and mortality. Evidence from the italian context [Tesi di dottorato] TRAPPOLINI, ELEONORA
- Packing conditions in metric spaces with curvature bounded above and applications [Tesi di dottorato] CAVALLUCCI, Nicola
- Mappatura ex vivo dei linfonodi sentinella nei tumori colo-rettali tramite la fluorescenza vicino all'infrarosso con colorante vitale verde di indocianina e sviluppo di nuovi fluorofori [Tesi di dottorato] PICCHETTO, ANDREA
- Shock-cell noise investigation on a subsonic/supersonic coaxial jet [Tesi di dottorato] GUARIGLIA, DANIEL