We exploit a suitable moment-based reparametrization of the Poisson mixtures distributions for developing classical and Bayesian inference for the unknown size of a finite population in the presence of count data. Here we put particular emphasis on suitable mappings between ordinary moments and recurrence coefficients that will allow us to implement standard maximization routines and MCMC routines in a more convenient parameter space. We assess the comparative performance of our approach in real data applications and in a simulation study.
Autore:
CATENACCI, FRANCESCO
Titolo:
Population size estimation via alternative parametrizations for Poisson mixture models [Tesi di dottorato]
Abstract:
Note:
diritti: info:eu-repo/semantics/openAccess
In relazione con info:eu-repo/semantics/altIdentifier/hdl/11573/1467664
Autori secondari:
TARDELLA, Luca
Valutatori esterni: A. Farcomeni, B. Liseo
ALFO', Marco
Valutatori esterni: A. Farcomeni, B. Liseo
ALFO', Marco
Classe MIUR:
Settore SECS-S/01 - - Statistica
Tesi di dottorato. | Lingua: Inglese. | Paese: | BID: TD21002990
Documenti simili
- Understanding health dynamics among the oldest-old [Tesi di dottorato] STROZZA, COSMO
- Mixed effect quantile and M-quantile regression for spatial data [Tesi di dottorato] SABBI, ALBERTO
- Estimation methods for data from nonprobability samples [Tesi di dottorato] ROSATI, SIMONA
- Explainable clinical decision support system: opening black-box meta-learner algorithm expert's based [Tesi di dottorato] CURIA, FRANCESCO
- Policy evaluation and spillover effects [Tesi di dottorato] DI GENNARO, DANIELE